-unctional low-band gap electron donors and their

Copolymeric and Tybrid structures for organic electronics

S. Aivali¹, S. Kakogianni¹, C. Anastasopoulos¹, A. K. Andreopoulou^{1,2}, J. K. Kallitsis^{1,2}

¹Department of Chemistry, University of Patras, Rio 26504, Greece.

²Institute of Chemical Engineering Science Foundation of research Technology Hellas FORTH/ICE-HT, Patras 26504, Greece

Introduction \$

The main routes towards more efficient organic solar cells are the development of more efficient electron-donors or electron-acceptors, control and stabilization of their morphology. In the first case and over the last years a vast number of electron donors has been reported whereas the morphology of the active layer still remains a challenge in terms of nanophase separation and stabilization The introduction of a hybrid compatibilizer, bearing both an electron donating polymer and electron accepting fullerene unit, has been suggested in order to enhance the stability of the active blend of the net components. Herein are presented low band-gap polymers belonging to PCDTBT family that were modified with ω-chain end functionalities, e.g perfluorophenyl or vinyl. The vinyl-

functionalized PCDTBTs were used as comonomers in free radical polymerization with electron accepting monomers. The co-polymeric materials were used for hybrid

synthesis based on previously reported methodology.

Functional PCDTBTS

Conclusionss

✓ P3,6CDTBT derivatives were successfully functionalized with vinyl and perfluorophenyl units.

✓ P3,6CDTBT-vinyl can be copolymerized with other vinylic monomers through FRP polymerization

affording block type copolymers.

✓ P3,6CDTBT-P5FQ copolymers were successfully transformed into azides and performed a

cycloaddition reaction with sp²-hybridized carbon nanostructures.

This research has been financed by the program "ARISTEIA" Action of the "Operational Programme Education and Lifelong Learning" co-funded by the European Social Fund (ESF) and National Resources, through the project "Design and Development of New Electron Acceptor Polymeric and Hybrid Materials and their Application in Organic Photovoltaics – DENEA 2780.

1. M. Jeffries-El, G. Sauvé, R. McCullough, D. Adv. Mater., 2004, 16, 1017. 2. M. Zhang, H. N. Tsao, W. Pisula, C. Yang , A.K. Mishra, K. Müllen J. Am. Chem. Soc. 2007, 129, 3472 3. N. Berton, C. Ottone, V. Labet, R. Bettignies, S. Bailly, A. Grand, C. Morell, S. Sadki, F. Chandezon, Macromol. Chem. Phys., 2011, 212, 2127 4. S. Kakogianni, S.N. Kourkouli, A.K. Andreopoulou, J.K. Kallitsis, J. Mater. Chem A, 2014, 2, 8110